Search results for "Marginal likelihood"

showing 8 items of 8 documents

Empirical Bayes improves assessments of diversity and similarity when overdispersion prevails in taxonomic counts with no covariates

2019

Abstract The assessment of diversity and similarity is relevant in monitoring the status of ecosystems. The respective indicators are based on the taxonomic composition of biological communities of interest, currently estimated through the proportions computed from sampling multivariate counts. In this work we present a novel method to estimate the taxonomic composition able to work even with a single sample and no covariates, when data are affected by overdispersion. The presence of overdispersion in taxonomic counts may be the result of significant environmental factors which are often unobservable but influence communities. Following the empirical Bayes approach, we combine a Bayesian mo…

0106 biological sciencesMultivariate statisticsBiological dataEmpirical Bayesian estimationEcologyTaxonomic compositionGeneral Decision SciencesEnvironmental monitoring010501 environmental sciencesBayesian inference010603 evolutionary biology01 natural sciencesBiodiversity assessment; Dirichlet-Multinomial model; Empirical Bayesian estimation; Environmental monitoring; Taxonomic compositionMarginal likelihoodBayes' theoremOverdispersionStatisticsTaxonomic rankDirichlet-Multinomial modelBiodiversity assessmentEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEmpirical Bayes methodMathematics
researchProduct

Efficient estimation of generalized linear latent variable models.

2019

Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estim…

0106 biological sciencesMultivariate statisticsMultivariate analysisComputer scienceBinomials01 natural sciencesPolynomials010104 statistics & probabilityAmoebastilastolliset mallitestimointiProtozoansLikelihood FunctionsMultidisciplinaryApproximation MethodsStatistical ModelsSimulation and ModelingApplied MathematicsStatisticsQLinear modelREukaryotaLaplace's methodData Interpretation StatisticalPhysical SciencesVertebratesMedicineAlgorithmAlgorithmsResearch ArticleOptimizationScienceLatent variableResearch and Analysis Methods010603 evolutionary biologygeneralized linear latent variable modelsSet (abstract data type)BirdsAnimalsComputer Simulation0101 mathematicsta112OrganismsBiology and Life SciencesStatistical modelMarginal likelihoodAlgebraAmniotesMultivariate AnalysisLinear ModelsMathematicsSoftwarePLoS ONE
researchProduct

Variational Approximations for Generalized Linear Latent Variable Models

2017

Generalized linear latent variable models (GLLVMs) are a powerful class of models for understanding the relationships among multiple, correlated responses. Estimation, however, presents a major challenge, as the marginal likelihood does not possess a closed form for nonnormal responses. We propose a variational approximation (VA) method for estimating GLLVMs. For the common cases of binary, ordinal, and overdispersed count data, we derive fully closed-form approximations to the marginal log-likelihood function in each case. Compared to other methods such as the expectation-maximization algorithm, estimation using VA is fast and straightforward to implement. Predictions of the latent variabl…

0106 biological sciencesStatistics and ProbabilityMathematical optimizationBinary numberfactor analysisLatent variableordination010603 evolutionary biology01 natural sciences010104 statistics & probabilityItem response theoryDiscrete Mathematics and CombinatoricsApplied mathematicslatent trait0101 mathematicsLatent variable modelMathematicsta112item response theoryFunction (mathematics)Latent class modelMarginal likelihoodfaktorianalyysipappisvihkimysmultivariate analysisvariational approximationStatistics Probability and UncertaintyCount data
researchProduct

A Bayesian unified framework for risk estimation and cluster identification in small area health data analysis.

2020

Many statistical models have been proposed to analyse small area disease data with the aim of describing spatial variation in disease risk. In this paper, we propose a Bayesian hierarchical model that simultaneously allows for risk estimation and cluster identification. Our model formulation assumes that there is an unknown number of risk classes and small areas are assigned to a risk class by means of independent allocation variables. Therefore, areas within each cluster are assumed to share a common risk but they may be geographically separated. The posterior distribution of the parameter representing the number of risk classes is estimated using a novel procedure that combines its prior …

Computer scienceEpidemiologyPathology and Laboratory Medicine01 natural sciencesGeographical locations010104 statistics & probabilityChickenpoxMathematical and Statistical TechniquesStatisticsMedicine and Health SciencesPublic and Occupational Health0303 health sciencesMultidisciplinarySimulation and ModelingQREuropeIdentification (information)Medical MicrobiologySmall-Area AnalysisViral PathogensVirusesPhysical SciencesMedicinePathogensAlgorithmsResearch ArticleHerpesvirusesScienceBayesian probabilityPosterior probabilityBayesian MethodDisease SurveillanceDisease clusterResearch and Analysis MethodsRisk AssessmentMicrobiologyVaricella Zoster Virus03 medical and health sciencesRisk classPrior probabilityCovariateBayesian hierarchical modelingHumansEuropean Union0101 mathematicsMicrobial Pathogens030304 developmental biologyBiology and life sciencesOrganismsStatistical modelBayes TheoremProbability TheoryProbability DistributionMarginal likelihoodConvolutionSpainPeople and placesDNA virusesMathematical FunctionsMathematicsPloS one
researchProduct

Simulation-based marginal likelihood for cluster strong lensing cosmology

2015

Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, $\alpha$ and $\beta$. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected …

FOS: Computer and information sciencesSTATISTICAL [METHODS]Cold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)NUMERICAL [METHODS]Ciencias FísicasPosterior probabilityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesStatistics - ApplicationsCosmologymethods: numerical//purl.org/becyt/ford/1 [https]cosmology: theory0103 physical sciencesCluster (physics)Applications (stat.AP)Statistical physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Galaxy clusterPhysicsmethods: statisticalgravitational lensing: strong; methods: numerical; methods: statistical; galaxies: clusters: general; cosmology: theory010308 nuclear & particles physicsgravitational lensing: strongAstronomy and AstrophysicsBayes factor//purl.org/becyt/ford/1.3 [https]STRONG [GRAVITATIONAL LENSING]RedshiftMarginal likelihoodAstronomíaTHEORY [COSMOLOGY]Space and Planetary Sciencegalaxies: clusters: generalPhysics - Data Analysis Statistics and ProbabilityCLUSTERS: GENERAL [GALAXIES]Astrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data

2017

Longitudinal modelling is common in the field of Biostatistical research. In some studies, it becomes mandatory to update posterior distributions based on new data in order to perform inferential process on-line. In such situations, the use of posterior distribution as the prior distribution in the new application of the Bayes’ theorem is sensible. However, the analytic form of the posterior distribution is not always available and we only have an approximated sample of it, thus making the process “not-so-easy”. Equivalent inferences could be obtained through a Bayesian inferential process based on the set that integrates the old and new data. Nevertheless, this is not always a real alterna…

Hybrid Monte Carlosymbols.namesakeComputer scienceMonte Carlo methodPosterior probabilityPrior probabilitysymbolsMonte Carlo integrationMarkov chain Monte CarloParticle filterAlgorithmMarginal likelihoodStatistics::Computation
researchProduct

Biophysical parameter estimation with adaptive Gaussian Processes

2009

We evaluate Gaussian Processes (GPs) for the estimation of biophysical parameters from acquired multispectral data. The standard GP formulation is used, and all hyperparameters (kernel parameters and noise variance) are optimized by maximizing the marginal likelihood. This gives rise to a fully-adaptive GP to data characteristics, both in terms of signal and noise properties. The good numerical results in the estimation of oceanic chlorophyll concentration and leaf membrane state confirm GPs as adequate, alternative non-parametric methods for biophysical parameter estimation. GPs are also analyzed by scrutinizing the predictive variance, the estimated noise variance, and the relevance of ea…

Hyperparameterbusiness.industryEstimation theoryNoise (signal processing)Pattern recognitionVariance (accounting)Marginal likelihoodsymbols.namesakeKernel methodKernel (statistics)symbolsArtificial intelligencebusinessGaussian processAlgorithmMathematics2009 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Prior-based Bayesian information criterion

2019

We present a new approach to model selection and Bayes factor determination, based on Laplace expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this approach, the Laplace expansion is only done with the likelihood function, and then a suitable prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood arising from the Laplace approximation and the prior. The result is a closed-form expression similar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and also incorporates the idea that different parameters can have different effective sample sizes (whereas BIC only allows one ov…

Statistics and ProbabilityLaplace expansionApplied MathematicsBayes factorMarginal likelihoodStatistics::Computationsymbols.namesakeComputational Theory and MathematicsLaplace's methodBayesian information criterionPrior probabilitysymbolsApplied mathematicsStatistics::MethodologyStatistics Probability and UncertaintyLikelihood functionFisher informationAnalysisMathematics
researchProduct